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Abstract—In this paper. the formulation and numerical implementation of two-dimensional tran-
sient dynamic elasto-plasticity by the boundary element method is presented. This formulation
considers material non-linearity and is based on an initial stress approach. It is the first ever attempt
to solve two-dimensional dynamic plasticity problems by the boundary element method. The
boundary integral equations are cast in an incremental form and are solved using a time stepping
technique. The Newton-Raphson iterative scheme is adopted in conjunction with the non-linear
constitutive equation to determine the incremental initial stresses. This formulation incorporates
quadratic isoparametric elements for both the boundary and volume discretizations. The accuracy
and stability of the methodology are demonstrated via numerical exampies. It has been implemented
in a general purpose, multi-region boundary clement software known as GPBEST.

INTRODUCTION

There has been a considerable amount of work done in the arca of dynamics by the
boundary element method. Most of the rescarch was focused on lincar clastodynamic
problems using transform domain formulations, te. Laplace and Fourier domains.
However, lincar clastic behavior is at best a first order approximation. Most problems in
the real world exhibit non-lincar material behavior, Thus the need for 4 dynamic elasto-
plastic algorithm cannot be overemphasized. The transform domain formulations cannot
be extended to non-lincar problems because of the coneept of superposition involved. For
this type of problem the algorithm must be based on u time-domain formulation. Mansur
(1983) was the first to present a two-dimensional time-domain boundary eiement formu-
lation using a two-dimensional transient fundamental solution. But his formulation
involved very complicated terms. Later, Israil and Bunerjee (1990a.b) offered a simplified
time-domain formulation using simpler transient kernel functions which produced very
accurate solutions. This lincar time-domain formulation is a precursor to the non-linear
transient dynamic algorithm presented in this paper.

The boundury clement method has proven to be a very effective numerical tool for
problems involving infinite and semi-infinite domains since the radiation condition is auto-
matically satisfied by the Green function (kernels) used in the formulation. Thus, there is
no need to model the far-field. In additon, for lincar problems, only the boundary of the
domain needs to be discretized. However. for non-lincar problems, the part of the volume
where non-linearity is expected, needs to be discretized as well. Although the number of
unknowns in the resulting algebraic system of equations depends only on the boundary
discretization. Still a considerable reduction in computational time and effort is achieved
compared to other domain-based methods. In this context. reference can be made to a
number of books on the subject. ¢.g. Banerjee and Butterficld (1981), Mukherjee (1982),
etc.

In recent years, quitc a number of works have been developed for solving non-
linear problems by the boundary element method. Riccardella (1973) presented the two-
dimensional and Banerjee er al. (1979), the three-dimensional formulations. Cathie and
Banerjee (1980) developed the axisymmetric elasto-plastic form. All of these works were
focused on static problems. First, a dynamic elasto-plastic BEM formulation was proposed
by Ahmad and Banerjee (1990) for three-dimensional probiems and they used an iterative
algorithm similar to that used by Banerjee and Raveendra (1986). The present work is the
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first attempt at two-dimensional problems of dynamic plasucity and it utilizes the Newton
Raphson tterative scheme recently proposed by Chopra and Dargush (1991,

BOUNDARY INTEGRAL EQUATION FOR DYNAMIC PLASTICITY

Under zero initial conditions and zero body forces. the boundary integral equation for
dvnamic plasticity can be written 1n an tneremental form as {Banerjee and Butterheld, 1981
Ahmad and Banerjee, 1990):
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¢, is the so-called jump term™: 1 and w0, are traction and displacement vectors,

respectively © A denotes incremental quantity @ indicates convolution : Aay stands tor initial
stress ; and 1 indicates the volume of the body.

The terms G, and £, are the transient displacement and traction kernels, respectively,
and represent the displacements and tractions at a point v at time £ due to @ unit pomnt foree
applied at & at a preceding time . These kernels have been presented in Israil and Banerjee
(1990a).

The incrementad mitial stresses appearing w eqn (1) are dertved from the interior stress
cquation which ts given by
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where G, and 7)) are the transient intertor stress kernels and can be found in Israil and
Bancrjee (1991). The term £, is defined as,
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In the above expression, d,, 1s the Kronecker delta ;e and v are the shear modulus and
Poisson’s ratio respectively,

The volume kernel appearing ineqn (2} is strongly singular. Henee, it must be evaluated
over (V= )as , — 0 where 1 s a circular exclusion around &, The tensor /g, is the jump
term coming out of the analytical integration of £, over P This jump term is the same
as that of the static plasticity and is independent of the size of the exclusion }, provided
the body has alocally homogencous initial stress distribution. Tts evaluation will be discussed
later.

Because of the strong nature of singularity of terms in cgn (2}, it cunnot be used to
obtain the mcremental stresses at points on or ncar the boundary. Thus an alternate
procedure is followed to obtain those quantities utilizing boundary sofutions. The following
set of relations is used 1n this procedure:
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where 7, are the set of local axes at the field point (&%).
Equations (3a. b, c¢) can be solved for the Ao, in terms of incremental tractions,
displacements and stresses without the need for temporal or spatial integrations.

VOLUME KERNELS FOR PLASTICITY

The volume kernels B,; and Py; appearing in eqns (1) and (2) respectively have been
derived using the causality of each kind of wave as explained in Israil and Banerjee (1990a).
The kernels take the following form:

(“‘ ”)2
20— =1
l i T l r C1
Blk,‘ = i N f’ ("l'f' - l 7 NS T T Yo, C‘_l) + o T —=
2npr |} ¢, r {(c,l’)z }"- r NG r
i -1 :

and

2(9,';)3_1 “ '
(2] e ) | (2

' Ds _2_<_1L)_—_1_ 2D,
m( ) ()

where " = t—1 is the retarded time; r* = (x;—¢&)(x,—¢)). ¢, and ¢, are propagational
velocities of the pressure and shear waves respectively.
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In the above expressions, C,, C., Cyand D, D.. D;. D,. Dy contain spatial terms
only and these are presented in Appendix B. These are the non-convoluted form of the
volume kernels for dynamic plasticity.

CONSTITUTIVE MODEL

A suitable constitutive model needs to be chosen for dynamic plasticity. The choice of
the model should be based on the type of problem, the material properties and the loading
conditions. An appropriate material model should also demonstrate a time-dependent
viscous behavior. There are a number of various material models available. However, von
Mises™ constitutive model is used here to study the characteristics of this type of material
under dynamic load. Other non-linear material models can be easily incorporated into this
algorithm.

The von Mises model describing the incremental stress—strain relation can be expressed

as:
L 38, 8.
Ag, = 2u| Ae,+ —— 8,86 — v Ak | (4)
! e 205(1+ Hi3p)
where
A, = DA,
= Incremental stress tensor,

a, = uniaxial yicld stress = \/‘ 5, S,

S, = deviatoric stress tensor = @, - 0,0,,/3,

11 = slope of the uniaxial plastic stress -strain curve.

NUMERICAL IMPLEMENTATION

Equations (1), (2), (3) and (4) can be regarded as the coupled system of equations for
dynamic plasticity. The numerical implementation of egns (1) and (2) involve volume
integration in addition to surface integration. The discretization of the volume is limited to
the region where non-linearity is expected. Before describing the spatial discretization, the
temporal discretization will be stated first.

(1) Temporal discretization
The time axis ¢ 1s discretized into N equal time steps of duration At such that 1 = NAr.
The field variables are assumed to vary hinearly during a time step and are expressed as:

St = M (D) + M) S ),

where f,(x, 1) stands for displacement, traction or initial stresses. M (1) and M,(r) are
linear temporal shape functions, given by: M (1) = (1—1,_,)/At. M.(1) = (1,—-1)/At;
t,., <71 <!, where the subscripts | and 2 refer to the forward and backward temporal
nodes, respectively, during a time step.

The terms involving time arc simple enough to carry out the temporal integration
analytically. After temporal integration, one obtains. from eqns (1) and (2):
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Terms appearing within the braces are presented in the Appendices.
Note that eqn (3) for the surface stresses does not require any convolution.

(it) Spatial discretization
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The boundary discretization is carried out using isoparamctric quadratic efements. The
coordinates and the functions (incremental displacements and tractions) at any point over

a boundary element can be expressed in terms ol the nodal values as:
x, = NX,. Bu, = N,MAU,. At =N, (AT,
where
i=1,2 and a=1,2,3.

N, (n) are the shape functions in the intrinsic coordinates () of the element,

Since the inclastic stresses vanish except in regions of non-lincar material response, the
volume discretization s required only where non-linearity is expected. The volume is
discretized with six- or eight-noded quadratic two-dimensional cells (Fig. 1). The geometry

and initial stresses with a cell are given by,

xt = A/Iz(’?)Xiz- Aafo = AIII(Q)AQ"O»’,
] f

where
x; = Curtesian coordinates of the cell,
X, = nodal coordinates of the cell,
n = intrinsic coordinates,
x = number of nodes in the cell (six or eight),

Ac), = nodal value of the incremental stress,
M (n) = isoparametric shape functions for the volume cell.

i

With this spatial discretization, eqn (5) takes the form:

N M
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Fig. 1. Two-dimensional volume cells : (a) Six-noded triangle. (b} Eight-noded quadrilateral,

S, = mth boundary element,
V,, = mth volume cell,
M = total number of boundary clements,

L = total number of volume cells.

It

i

Similarly, eqn (6) takes the following form:
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The transient kernels appearing in eqns (7) and (8) have sharp variations over space.
Hence, the numerical integration (using Gaussian quadrature) of these terms needs intel-
ligent element/cell subdivision with optimum Gauss points in each sub-segment. Morcover,
depending on whether the source point (£} lies on the element or cell being integrated, the
spatial integral can be categorized into the following three types:

(i) ¢ does not lie on the element or cell being integrated ;
(if) & lies on the clement or cell being integrated but the integral is weakly singular;

(iti) & lies on the element or cell being integrated but the integral is strongly singular.
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The first type of integrals involve the bulk of the computational etfort. These inte-
grations are carried out by subdividing each element or cell into a number of sub-elements
or sub-cells. For surfuce elements, this technique has been described in Lachat and Watson
{1976) for clusto-static problems while Banerjee and Raveendra (1986) have discussed the
integration of volume cells in the context of static plasticity. In transient dynamic problems.
as expluined earlier, more element or cell subdivisions are required for accurate evaluation
of the integrals. The singular integration of the G -kernel over the boundary elements and
that of the B, -kernel over the volume cells belong to the second category of integrals. Their
evaluation involves more element cell subsegmentation with suitable mapping to make the
kernel-shape function-Jacobian product well behaved over cach sub-segment (Banerjee and
Raveendra. 1986). The third type of integral involves the singular integration of F,-kernel
and Py,-kernet over the boundury and volume respectively. These are evaluated indirectly
as claborated in the following section.

F-kernel. The singular integral involving the FiJ'™-kernel has the same type and order
of singularity as the corresponding clasto-static kernel during the first time step. This
integral is evaluated by adding the singular integral of the elasto-static F,-kernel and the
non-singular integral involving the difference between the transient and elasto-static F-
kernel. The singutar integral of the static F-kernel is determined indireetly by using the so-
called rigid body techniyue. For a detailed discusston, interested readers are referred to the
papers by Ahmuad and Bancerjee (1988) and {srail and Banerjee (1990b).

it is to be mentioned here that for the above technique to be used, the body must have
a closed boundary. Thus for half-plane problems, the region of interest must be enclosed
with fictitious boundary clements known as “enclosing clements™.

P -kernel, The plasticity kernel Py, appearing in eyn (2} s strongly singular when
the ticld pomnt lies in the volume cedl being integrated. The results of this integration
contribute to the diagonal block ol the volume matrix. This mtegral also has the same type
and order of singularity as the corresponding static plasticity kernel. Thus it is evaluated
i a0 procedure simifar to that explained in the previous section, 1.e. by addition of the
singular integral of static P, -kernel and the non-singular integral involving the difference
between the transient and static £,,,-kernels. The evaluation of the non-singular integral
does not pose any dithiculty.

The evaluation of the singular integral involving the static £, ~kernel can be performed
by ctther using analytical jump terms or by using a speciad technique known as initial stress
expunsion technique. For accuracy, the latter approach is utilized here.

In this procedure, the coctlicients of the stress equutions related to the non-singular
nodes are integrated in the usual manner using Gausstan integration with appropriate cell
subdivisions. At the singular node, there are three undetermined coethicients corresponding
to the initial stress, These cannot be evatuated easily. In an approach similar to that of rigid
hody technigue used in evaluating the diagonal terms for surface equations, ¢ach of these
coetlicients is caleulated by assuming an admissible tnitial stress state and a compatible
displacement field. Details of this process cun be found in Banerjee er af. {1989) and Banerjee
and Henry (1989). Tt is to be mentioned here that for this method. the entire body must be
discretized with cells. However, for cases where only a small region of the body is expected
to be plastic, itis modeled as a multiply-connected regron with tull volume discretization
used only tn the non-hincar region, the remaining region(s) having no cell.

SOLUTION PROCEDURE

With the temporal and spatial integration complete, a system of algebraic equations
can be developed. This is obtained by sequentially writing eqn (7) for cach of the collocation
points. The assembled system of equation takes the following matrix form:
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At time ¢, there are as many unknowns as the number of equations. Also the past
history {up to time NM—1) is known. Thus. eqn (9) can be rearranged to:

[ATHAX = [BAY [ +[CTH A  +{RY] (10)
where {AX"! and JA Y™ are the vectors of the unknown and known incremental boundary
quantities and {R"} is the effect of the past dynamic history on the current time node and
given by,

(RY) = = TG " +GY NAT =Y "7+ F LA 8] T BY {80
=1

Similarly. the integral equation for stresses, 1.e. eqn (8) can be written as,

[Ac ) = —[AJIAXY B AV +{CTAY T+ (R, (1)

(a)

/Tﬂi'
@) 9] 0]

(b}

Pa

()
Fig. 2. (a) Cylinder under transiont infernal pressure. (b)Y A 221 segment of the cylinder (1/8th)
used in modehing. (¢ Time history of the applied internal pressure.
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(a)

(%)

(c)

Fig. 3. Three different mesh patterns: (a) Mesh 1 (6 clements: 2 cells). (b) Mesh 2 (10 ¢lements ;
4 cells). (¢) Mesh 3 (12 clements ; 8 cells).

where (C”] contains the contribution from the jump term J,,, in addition to the volume
integral of P,,-kernel, and

N

-1
{R,x} - ([G(;v ”I+G'£N "]{AT’}—-[F{\ ~~|+F,2,N n]{AU,,}_i_[P_l\'—n*l+P.:\'—n]{A0.M}).

ne

The system of equations given by eqns (10) and (11) along with the constitutive

Stress(a) )

c ol

Strain(¢€)

Fig. 4. Stress-strain behavior of the cylinder material.
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Fig. 5. Time history of the radial displacement of the cylinder using three different mesh: (a) inner
surface ; (b) outer surface.

equition (4) form the basis of the dynamic plasticity algorithm. However, the solution of
eqns (10) and (11) requires the knowledge of initial stresses which are not known «a priori.
Thus an iterative scheme must be used for this process. Ahmad and Banerjee (1990), for
their dynamic plasticity algorithm, used the iterative algorithm suggested by Banerjee and
Raveendra (1986). However, it was found that for dynamic problems faster and better
convergence i1s achieved by using the so-called “Newton-Raphson™ iterative scheme as
developed by Chopra and Dargush (1991).

APPLICATIONS

The dynamic plasticity algorithm developed in this chapter is the first of its kind for
two-dimensional problems. Thus, it has been very difficult to find any analytical or numerical
solution to compare the results from the present methodology. Hence, the accuracy and
stability of this mcthod has been established via convergence studics. The first example has
been chosen for that purpose. The other example 1s presented to demonstrate the appli-
cability of this mcthod to practical problems.
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Fig. 6. Time history of the radial displacement of the cylinder using two different time steps
(mesh 2): (a) inner surface ; (b) outer surface.

Example | : Cylinder under radial pressure

The cylinder shown in Fig. 2a is subjected to an internal radial pressure the time-
history of which is triangular (Fig. 2c). Because of symmetry, only 1/8th of the cylinder
needs to be modeled with a roller on the lateral faces (Fig. 2b).

The various geometrical and material properties are presented below :

internal radius, R, = q,
external radius, R, = 2a,
a=10; v=025; p=1.0,

rise time, {, = 5s.

Convergence studies were carried out with respect to mesh refinement and time-step
size. Three different mesh patterns and two different time steps were used. Mesh 1 has two
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Fig. 7. Time history of the radial displacement of the inner surface of the cylinder using three
different mesh (elastic).

volume cells, mesh 2 has four volume cells while mesh 3 contains eight cells. All three
meshes are depicted in Fig. 3.

The problem was analyzed assuming it to be both an elastic and an elasto-plastic solid.
The stress -strain behavior for the clasto-plastic material is shown in Fig. 4. Also for the
non-lincar analysis, von Mises' plasticity model was used and the hardening was assumed
to be such that £,/£, = 0.5. The maximum load intensity was taken as twice the yield
capacity, r.e. p, = 27Y.

The time-history of the radial displacements of the inner and outer surface of the
cylinder are plotted in Fig. 5 for the three different mesh patterns. The time step s chosen
to be Ar = 0.1, where 7, is the time needed by the pressure wave to travel from the inner
surface to the outer surface of the cylinder and is given by, ¢, = a'¢,. The results obtained
by the three different meshes agree fairly well with mesh 2 and mesh 3 producing almost
identical solutions hence establishing the convergence of the solutions. Mesh 2 was chosen
for further study.

Next, analyses were carried out to establish the accuracy with respect to the time steps.
Two different time steps were chosen viz, Ar = 0.055¢, and Ar = 0.11¢,. Results of the
analyses are presented in Fig. 6 and the two sets of results agree reasonably well.

Also, similar convergence studies were performed for the elastic analysis with respect
to mesh refinements. The radial displacement at the inner surface of the cylinder obtained
from the above study is shown in Fig. 7. [dentical solutions are obtained from all three
meshes establishing the confidence in the results.

Finally, the results from the elastic and elasto-plastic analyses are compared in Fig. 8.
The solutions obtained from the clasto-plastic analysis are higher than the elastic analysis,
as one would expect.

Example 2. Explosion in an underground cylindrical cavity

An underground cylindrical cavity (Fig. 9) is subjected to a blast load. The time history
of the load is triangular (same as in Fig. 2¢). The symmetry of the problem dictates that
only one-half of the problem is needed to be modeled as shown in Fig. 10. The medium is
modeled as a two-region problem. One region (Region I, Fig. 10) is discretized with 34
volume cells where non-lincar material behavior is expected. The discretization pattern is
depicted in Fig. 11 The other region (Region 11, Fig. 10) where only linear behavior is
expected has only boundary discretization. The semi-infinite part is modeled with “‘enclosing
clements’ for proper evaluation of the jump terms. The various problem parameters are:
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Fig. 9. Explosion in an underground cylindrical cavity.
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Fig. 12. Time history of vertical displacement of A (0,0).

R=1 p=1 1t =Is

For the non-lincar analysis, the maximum load intensity (p,) is taken as twice the yield
strength. The hardening is chosen such that Ey/E, = 0.8 (Fig. 4). In this example also, von
Mises™ plasticity model and normalized displacements (UE/p,R) are plotted against non-
dimensional time (C 1/ R) 1s used.

The displacements at a few selected surface points are investigated. The time history
of vertical displacements at points 4(0,0), B(0.45R,0) and C(1.1R,0) are presented in Figs
12, 13 and 14, respectively. The displacements obtained from the non-linear analysis are
higher than the elastic case, as expected. The history of horizontal displacements at points
B and C are depicted in Figs 15 and 16. The non-linear behavior is similar to the vertical

Elaatic
25

5@

Vertical Displacement

-.5Q 1 L 1 1

Time

Fig. 13. Time history of vertical displacement at 8 (0.45R,0).
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Fig. 14. Time history of vertical displacement at C (1.1R.0).

case. However, the horizontal displacement at location C is found to be higher than at
location B.

CONCLUSION

An advanced development of the time-domain boundary element method for two-
dimensional problems of dynamic elasto-plasticity is presented. This algorithm incorporates
higher order spatial and temporal variations of the field quantities. Von Mises’ material
model is used for simplicity, although any other material model can be easily incorporated
in the formulation. The formulation is found to produce static plasticity results when the
time step is very large. When the yield stress was selected to be very large compared to the
applied stress, the results were the same as those obtained from a linear elastodynamic
analysis. Both of these help establish the validity of the algorithm. Because of the unavail-
ability of any published results in this area, no comparative study could be provided. Hence,
the accuracy of the methodology is established via convergence studies.
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Fig. 15. Time history of horizontal displacement at 8.
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APPENDIX A

Bounduary kernels

: —1AT
Gy '+ G- :’-1- i:[é’ﬂ[)\'cosh“ (&/—VAI) ~2(N=1)cosh~! {M}
“RP L GL4 r r
-2 3
+(N—2)cosh-" {'iﬂ.‘“‘i.r_:)i‘f}],u (=1 §(5,,,—zr_,rj)(€:%lr) Sy~ (=148, ~2rr )0,

"(‘ l),(‘sqah ”’.lrJ)PI:] (AI)

$AS 29:11-1
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re1 *

where
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APPENDIX B
Interiar stress kernels
vt v i 1B, B, s ATV
Gy, +GL,, = 2*&,’,[03 Py p P+ 131(‘;' (Q:.-0n (B
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where, P, and (0, have been defined in the previous section.,
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APPENDIX C
tCch
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(0]

Volume kernels for plusticity
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