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Abstract-In this paper. the formulation and numerical implementation of two-dimensional tran­
sient dynamic elasto-plasticity by the boundary element method is presented. This formulation
considers material non-linearity and is based on an initial stress approach. It is the first ever attempt
to solve two-dimensional dynamic plasticity problems by the boundary element method. The
boundary integral equations are cast in an incremental form and are solved using a time stepping
technique. The Newton-Raphson iterative scheme is adopted in conjunction with the non-linear
constitutive equation to determine the incremental initial stresses. This formulation incorporates
quadratic isoparametric elements for both the boundary and volume discretizations. The accuracy
and stability of the methodology are demonstrated via numerical ex,tmples. It has been implemented
in a general purpose. multi-region boundary element software known as GPBEST.

INTRODUCTION

There has been a considerable amount of work done in the area of dynamics by the
boundary clement method. Most of the research was focused on linear c1astodynamic
problems using transform domain formulations. i.e. Laplace and Fourier domains.
However. linear elastic behavior is at oest a lirst order approximation. Most problems in
the real world exhibit non-linear material oehavior. Thus the need for a dynamic elasto­
plastic algorithm cannot be overemphasi/ed. The transform domain formulations cannot
be extended to non-linear problems oecause of the concept of superposition involved. For
this type of problem the algorithm must be based on a time-domain formulation. Mansur
(19&3) was the first to present a two-dimensional time-domain boundary element formu­
lation using a two-dimensional transient fundamental solution. But his formulation
involved very complicated terms. Later. Israil and Banerjee (1990a.b) alTered a simplified
time-domain formulation using simpler transient kernel functions which produced very
accurate solutions. This linear time-domain formulation is a precursor to the non-linear
transient dynamic algorithm presented in this paper.

The boundary element method has proven to be a very effective numerical tool for
problems involving infinite and semi-infinite domains since the radiation condition is auto­
matically satislied by the Green function (kernels) uscd in the formulation. Thus. there is
no need to model the far-field. In addition. for linear problems. only the boundary of the
domain needs to be discretized. However. for non-linear problems. the part of the volume
where non-linearity is expected. needs to be discretized as well. Although the number of
unknowns in the resulting algebraic system of equations depends only on the boundary
discretization. Still a considerable reduction in computational time and error! is achieved
compared to other domain-based methods. In this context. reference can be made to a
number of books on the subject. e.g. Banerjee and BUllerfleld (198 t). Mukherjee (1982).
etc.

In recent years. quite a number of works have been developed for solving non­
linear problems by the boundary element method. Riccardella (1973) presented the two­
dimensional and Banerjee et al. (1979). the three-dimensional formulations. Cathie and
Banerjee (1980) developed the axisymmetric elasto-plastic form. All of these works were
focused on static problems. First. a dynamic elasto-plastic BEM formulation was proposed
by Ahmad and Banerjee (1990) for three-dimensional problems and they used an iterative
algorithm similar to that used by Banerjee and Raveendra (1986). The present work is the
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tirst attempt at two-dimenslvnal probkms of dynamic pla.,ul:ity and it Lluli/cs thc '-.;c\~ tpn
Raphson itaative schcme rel:ently propl)SeJ by Ch,)pra and Dargush ( Ill\) I).

BOL:\D,\RY I:\TEGR.\L EQl\TIO:\ FOR OY:\\\IIC PL\STIClTY

Under lao initial conditions and lew body forces. the bvundary intt:gral equation for
dynamic plasticity can be written in an incremental form as IBanerJce and Buttt:rlield. I\)S] :
Ahmad and Bancrjee. l'-NO):

C"I ~ ),1/1,(~, t) = r[e'l(r.I:~. r) * ,11, - FJLI:~. r) * ,111,J dS(x)
.,'

+ r8"l(X. I :~. r) * i.\"'~ d I'(x). I II
.,1

where

C'l is the so-called "jump terlll": I, and /I ;11'\: tr,lctll)!1 and dlsplaccmcnt vcctors.
rcspecti\\:ly: ,\ denotl:s incrl:llll:ntal quantity:" indic;lles con\olution: ,\",'; st;lnds for initial
strl:ss: and I' mdicaks thl: vlllumc or the hody,

The tcrms (i'l and t-:, arc thl: transient dispb~'cmcntand traction kl:rnel". respl:l:tivdy.
and rl:prl:scnt thl: displacl'mcnh ,IIHI tr,l\:tion" at a p"int\' at time I due to a unit point force
applicd at ~ at a prel:eding tillle r. Thesc keI'lH:!'> h;l\e heen pre"enled in Israil and Banerjee
( I \)90a).

The inl:rellll:ll!al initial "tre""es aPPl:aring in eqn (I) arc derived fwmthe interior "tress
equation whidl is given hy:

,1""( ~.I) == r[(iZJ\. I:~. r) *L\l, - I-';,,(\.I:~. r)" L\/I, I d.'l(\,)
.'

whae GZ" and FZ" are the transient interim stress kernels and can be IlJllnd in braiI and

Banerjec (Il)') I), Th<.: term '''1'' is ddincd as.

In the ahove expn:ssion. /)'1 is the Kronecker delta: II and \' are the shear modulus and
Poisson's ratio respectively.

The volume kernel appearing in eqn (2) is strongly singular. Hcn<.:e. it must be evaluated
over (V - V,) as V, -> () whcre I',. is a cir<.:ular exdusion around ~, The tens,)r J'hl is the jump
term coming out of thc analytic;i1 integration of P"1i over I'. This jump term is the same
as that of the static plasticity and is independent of the sile of the exdusion V provided
the body has a locally homogeneous ini tial "tress distribution. [ts evalua tion will he disl:lIssed
later.

Because of the strong nature of singularity of terms in eqn (2). it cannot he lIsed to
obtain the inaemental stresses at points on or ncar the houndary. Thus an alternate
procedure is followed to ohtain those quantities utili/ing houndary solutions. The following
set or relations is used in thi" procedure:
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A (.=b ) _ [ 2f.lv ~ A (-b) fA (:b ) A (:b )1] A O(:b) (3 )ua,/ .. ,t - (1_2v)u;jUUu ~.t +f.lluU',j ... t +uu/., ... t f -ua,/",t a

6t,(e.t) = 6a'j(e,t)n,(~b) (3b)

c6uj L'6u, c~;

CT]. c~; C'7.· (3c)

where '1. are the set of local axes at the field point (~b).

Equations (3a. b. c) can be solved for the 6a;] in terms of incremental tractions.
displacements and stresses without the need for temporal or spatial integrations.

VOLUME KERNELS FOR PLASTICITY

The volume kernels B,t; and Pt/i; appearing in eqns (I) and (2) respectively have been
derived using the causality of each kind of wave as explained in Israil and Banerjee (1990a).
The kernels take the following form:

and

I (c,t' )-- H-' ---I
c~ , 1

where t' = t-r; is the retarded time; ,2 == (Xj-~j)(X,-~,)' c\ and c~ are propagational
velocities of the pressure and shear waves respectively.
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In tht: above expressions. C. C:. C 1 and D I , D:. D" D,. D j contain spatial terms
only and these are presented in Appendix B. These are the non-convoluted form of the
volume kernels for dynamic plasticity.

CO~STITUTIVE MODEL

A suitable constitutive model needs to be chosen for dynamic plasticity. The choice of
the model should be based on the type of problem. the material properties and the loading
conditions. An appropriate material model should also demonstrate a time-dependent
viscous behavior. There are a number of various material models available. However. von
Mises' constitutive model is used here to study the characteristics of this type of material
under dynamic load. Other non-linear material models can be easily incorporated into this
algorithm.

The von Mises model describing the incremental stress-strain relation can be expressed
as:

(4)

where

/),rr" == f)::~//),I:k1

== incn:mcntal stress tensor,

IT" == uniaxial yield stress = J~S,/;".
S" = deviatoric stress tensor = IT" - '),P.. !J.
/I == slope of the unia.xial plastic stress strain curve.

NUMERICAL IMPLEME:\TATION

Equations (I). (2). (3) and (4) can be regarded as the coupkd system of equations for
dynamic plasticity. The numerical implementation of eqns (I) and (2) involve volume
integration in addition to surface integration. The discretization of the volume is limited to
the region where !lpn-linearity is expected. Before describing the spatial discretization, the
temporal discretization will be stated first.

(i) Tempora/ discreli:'illili/l

The time axis I is discretized into N equal time steps of duration /),1 such that I = N/),I.

The field variables are assumed to vary linearly during a time step and are expressed as:

where il". r) stands for displacement. traction or initial stresses. '\.-[I(r) and M!(r) are
linear temporal shape functions. given by: MI(r) = (r-/n-d//),I. M!(r):::: (tn-r)//),I;

tn .. I < r < In' where the subscripts I and 2 refer to the forward and backward temporal
nodes, respectively. during a time step.

The terms involving time are simple enough to carry out the temporal integration
analytically. After temporal integration. one obtains. from egns (I) and (2) :
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and

Terms appearing within the braces are presented in the Appendices,
Note that eqn (3) for the surface stresses docs not require any convolution,

(6)

(ii) Spatial discreti:arion
The boundary discretization is carried out using isoparametric quadratic elements. The

coordinates and the functions (incremental displacements and tractions) at any point over
a boundary clement can be expressed in terms of the nodal values as:

x, = N.(tilX" , 6/1, = N,(til6U,., 6t, = N.(til6 T".

where

i= 1,2 and:x = 1,2.3.

N.(ril are the shape functions in the intrinsic coordinates (til of the ekment.
Since the inelastic stresses vanish except in regions of non-linear material response, the

volume discretization is required only where non-linearity is expected. The volume is
discretized with six.- or eight-noded quadratic two-dimensional cells (Fig. I). The geometry
and initial stresses with a cell are given by,

where

x, = Cartesian coordinates of the cell,
Xi2 = nodal coordinates of the cell,

t] = intrinsic coordinates,
a = number of nodes in the cell (six. or eight),

.10':;' = nodal value of the incremental stress.
M 2 (,.,) = isoparametric shape functions for the volume cell.

With this spatial discretization. egn (5) takes the form:

C ·(-")6u"'(1') = ~ {~[6T"i {GlV.0+1+GN-n}N dS-6unl fp'V-n+l+FN-n}N dS]'1 ~ {'-, ~ L 1;1: $Jj 'I: 1: r.l 't III "1. 'J

n_1 m_ t Sow S...

where
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(b)

111

FIg, I, Two-dimcnsion," volumc cells: (a) Si,,-noded triangle, (b) Eight-noded <.juadrilateral.

S,,, = mth boundary clement.
V", = mth volume cell.
A! = total number of boundary clements.
L = total number of volume cells.

Similarly. eqn (6) takes the following form:

The transient kernels appearing in eqns (7) and (8) have sharp variations over space.
Hence. the numerical integration (using Gaussian quadrature) of these terms needs intel­
ligent clement/cell subdivision with optimum Gauss points in each sub-segment. Moreover.
depending on whether the source point (~) lies on the element or cell being integrated. the
spatial integral can be categorized into the following three types:

(i) docs not lie on the element or cell being integrated;
(ii) lies on the clement or cell being integrated but the integral is weakly singular;

(iii) lies on the element or cell being integrated but the integral is strongly singular.
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The first type of integrals involve the bulk of the computational effort. These inte­
grations arc carried out by subdividing each element or cell into a number of sub-elements
or sub-cells. For surface clements. this technique has been described in lachat and Watson
(1976) fL)r dasto-:;tatic problems while Banerjee and Raveendra (l986) have discussed the
integration of volume cells in the context of static plasticity. In transient dynamic problems.
as explained eadit:[. more element or cell subdivisions are required for accurate evaluation
of the integrals. The singular integration of the Gil-kernel over the boundary elements and
that of the B",-h:rnd over the volume cells belong to the second category of integrals. Their
evaluation imolves more ekment cell subsegmentation with suitable mapping to make the
kernel-shape function-Jacobian product well behaved over each sub-segment (Banerjee and
Raveendra. In6). The third type of integral involves the singular integration of F,I-kernel
and PUll-kernel over the boundary and volume n::spectively. These an.: evaluated indirectly
as elaborated in the following section.

F,,-kcmd The singular integral involving: the p,;.,n'-kernel has the same type and order
of singularity as the corresponding e1asto-static kernel during the tirst time step. This
integral is evaluated hy adding the singular integral of the elasto-static F,,-kerncl and the
rHln-singular intq;ral involving the ditference between the transient and e1asto-static F

II
­

kernel. The singular integral of the static F,,-kernel is determined indirectly hy using the so­
called rit/id hudr (cc!rllitl/lc. For a detaikd discussion. interested readers arc referred to the
papers hy Ahmad and Bancrjee (llJXX) and Israil and Banerjee (1990h).

It is to he melltloned here that for the abovc techniquc to he uscd. the hody must have
a dosed houlldary. Thus for half-plane pn1hkms. thc region of in\erl'st must he endosed
with liditlous houlllbry clements kll\lwn as "enclosing c1cments".

I',,,,-kcmd The pbsticity kcrnel 1\;" appcaring in cqn C!) is strongly singular when
the lield point lies in the volume cell being integrated. The results of this integration
l'ontribU\e to the diagon~d hlock of the volullie matrix. This integral also has the same type
and order of singularity as the corresponding statil: plasticity kernel. Thus it is evaluated
ill a procedure similar to that eX[llained in thl: previous sel:tion. i.e. hy addition of the
singular illtegral of static I'.\I,,-kane! and the non-singular integral involving the dilrerem:e
between the transient and statil: I\h,-kernels. The evaluation of the non-singular integral
does not [lose any ditliculty.

The evaluation ufthe singular integral involving the st'ltic 1'1I'i-kernel I:an he paformed
by eIther using analytical jum[l terms or by using a s[lel:ial technique known as il/itial strcss

t'XplIIISi(/n (('('hl/iilllt'. Fur accural:Y. the latter approach is utilized here.
In this procedure. the I:oellicients of the stress equations rehlted to the non-singular

nodes :lre integrated in the usual manner using: Gaussian integration with appropriate cell
suhdivisions. At the singular node, there arc thn.:e undetermined I:ocllll:ients corresponding
to the initial stn:ss. These can nut he cvaluated easily. In an approach similar w that of rigid

hodl' ll'cftnhl/lc used in evaluating the diagonal terms for surface equations, each of these
coellicients is cakulated by assuming an admissible initial stress state and a compatihlc
displacement Iield. Details of this process e;lI1 he found in Ikll1erjec ct al. (19X9) and Banerjee
and Henry (19X'J). It is to he mentioned here that for this method. the entin: body must be
disereti/ed with cells. Ilowever. for cases where only a small region of the hody is expel:ted
to he plastic. it is lllodekd as a llluitiply-connected region with full volume disl:rctization
used only in the nun-linear region. the remaining region(s) having no cdl.

SOLUTIO~ PROCEDURE

With the temporal and spatial integration complete. a system of algehraie equations
can he developed. This is obtained hy sequentially writing eqn (7) for each of the collocation
points. The assemhled system of equ:ltion takes the I()llowing matrix form:
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I [[G~-""+G~-"]~~T';-[F~ "·'+F~"l:~C":+[B~ "·'+B~-"H~(j''";l [0;.
"-I

(9)

At time f, there are as many unknowns as the number of equations. Also the past
history (up to time S - I) is known. Thus. eqn (9) can be rearranged to:

( 10)

where i~X': and :~ r': art: the vectors of the unknown and known incremental boundary
quantities and! R \ : is the dli:ct of the past dynamic hIstory on the current time node and
given by.

{R': =
, 1

I: ([G~ ".I+G~ "I:,1T":-[F~ ""+F~ "I:~U":+[B~ H'+B~ nH~(j"n:).
n=1

Similarly. thc intcgral equation for stresscs, i.c. cqn (8) can be written as,

( II )

(n.)

(b)

p

po

tinu:

(c)

Fig. ~. (a) Cylinder under Ir:Hlsient internal pressure. (h) ,.\ ~2j segment of the cylinder (l!Sth)
used in modclinl,:, Ie) Time history Ill' the applied internal pressure.
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(a)

(b)

(c)

Fig. 3. Three dill"crent mesh pallerns: (a) Mesh I (6 clements; 2 ~ells). (b) Mesh 2 (IU dements;
4 ~clls). (~) Mesh 3 (12 clements; l! ~ells).

where [Cn
] contains the contribution from the jump term J kli1 in addition to the volume

integral of PkJ,rkernci. and

,v-I

{W'} = - L ([cT' ··'+C~' l[~T'}-[Fj' "'+f1' l[~U'}+[P~-Hl+Pi-']{~a"'}).
• - I

The system of equations given by eqns (10) and (II) along with the constitutive

SlreJJ (<7)

y

Slrain (t)

Fig. 4. Stress-str,lin behavior of the cylinder material.
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surfa<:.:; (b) llut<:r surl';l<:':.

equation (4) form the basis of the dynamic plasticity algorithm. However. the solution of
eqns (10) and (II) requires the knowledge of initial stresses which arc not known IJ priori.
Thus an iterative scheme must be used for this process. Ahmad and Banerjee (1990). for
their dynamic plasticity algorithm. used the iterative algorithm suggested by Banerjee and
Raveendra (1986). However, it was found that for dynamic problems faster and better
convergence is achieved by using the so-called "Newton-Raphson" iterative scheme as
developed by Chopra and Dargush (1991).

APPLICATIONS

The dynamic plasticity algorithm developed in this chapter is the first of its kind for
two-dimensional problems. Thus. it has been very difficult to find any analytical or numerical
solution to compare the results from the prescnt methodology. Hence. the accuracy and
stability of this method has been established via convergence studies. The first example has
been chosen for that purpose. The other example is presented to demonstrate the appli­
cability of this method to practical problems.
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Fig. 6. Time history of the radial displacement of the cylindc:r using two different time steps

(mesh 2): (a) inner surface; (b) outer surface.

Example I : Cylinder under radial pressure
The cylinder shown in Fig. 2a is subjected to an internal radial pressure the time­

history of which is triangular (Fig. 2c). Because of symmetry. only 1/8th of the cylinder
needs to be modeled with a roller on the lateral faces (Fig. 2b).

The various geometrical and material properties are presented below:

internal radius, R, = a,

eXlernal radius, R. = 2a.

a = to; v = 0.25 ; p = 1.0,

rise lime, I, = 5s.

Convergence studies were carried out with respect to mesh refinement and time-step
size. Three different mesh patterns and two different time steps were used. Mesh I has two
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Fig. 7. Time history of the radial displacement of the inner surface of the cylinder using thrL"e
different mesh (clastic).

volume cells. mesh 2 has four volume cells while mesh J contains eight cells. All three
meshes arc depil:ted in Fig. J.

The problem was analyzed assuming it to be buth an elastil: and an elasto-plastil: solid.
The stress strain behavior for the e1asto-plastil: material is shown in Fig. 4. Also for the
non-linear analysis, von Mises' plastil:ity model was used and the hardening was assumed
to be sudl that L'1/ E , = 0.5. The maximum load intensity was taken as twice the yield
capal:ity, i.e. Pll = 2 r.

The time-history of the radial displal:ements of the inner and outer surface of the
cylinder arc plotted in Fig. 5 for the three different mesh patterns. The time step is chosen
to be til = 0.11 (. where te is the time needed by the pressure wave to travel from the inner
surface to the outer surface of the cylinder and is given by. Ie = ac I' The results obtained
by the three different meshes agree fairly well with mesh 2 and mesh 3 producing almost
identical solutions hence establishing the convergence of the solutions. Mesh 2 was chosen
for further study.

Next. analyses were carried out to establish the accuracy with respect to the time steps.
Two different time steps were chosen vi=. til = 0.055/e and til = O.II/e . Results of the
analyses are presented in Fig. 6 and the two sets of results agree reasonably well.

Also, similar convergence studies were performed for the elastic analysis with respect
to mesh refinements. The radial displacement at the inner surface of the cylinder obtained
from the above study is shown in Fig. 7. Identical solutions are obtained from all three
meshes establishing the confidence in the results.

Finally, the results from the elastic and elasto-plastic analyses are compared in Fig. 8.
The solutions obtained from the elasto-plastic analysis arc higher than the elastic analysis.
as one would expect.

Example 2: Explosion ill (lfl lII/(lergrow/(1 cylindrical ('acity
An underground cylindril:al cavity (Fig. 9) is subjected to a blast load. The time history

of the load is triangular (same as in Fig. 2c). The symmetry of the problem dictates that
only one-half of the problem is needed to be modeled as shown in Fig. 10. The medium is
modeled as a two-region problem. One region (Region I. Fig. 10) is discretized with 34
volume cells where non-linear material behavior is expected. The discretization pattern is
depil:ted in Fig. II. The other region (Region II, Fig. 10) where only linear behavior is
expected has only boundary discretization. The semi-infinite part is modeled with "enclosing
elements" for proper evaluation of the jump terms. The various problem parameters are:
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Fig. 9. Explosion in an underground cylindrical cavity.
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For the non-linear analysis. the maximum load intensity (PIl) is taken as twice the yield
strength. The hardening is chosen such that £2/£1 == 0.8 (fig. 4). In this example also. von
Mises' plasticity model and normalized displacements (UE/PIlR) arc plotted against non­
dimensional time (C\t/R) is used.

The displacements at a few selected surface points are investigated. The time history
of vertical displacements at points A(O. 0). B(0.45R, 0) and C( 1.1 R. 0) arc presented in Figs
12. 13 and 14, respectively. The displacements obtained from the non-linear analysis are
higher than the clastic case, as expected. The history of horizontal displacements at points
Band C arc depicted in Figs 15 and 16. The non-linear behavior is similar to the vertical
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Fig. 13. Time history of vertical displacement at 8 (O.45R. O).



A. S. M. ISRAIL and P. K. BA~ERJEE

,----,

IS.a12.15

Elastic

Plastic

9.06.0

---',,,
" " "

3.0

14-tii

1.25

1.00

.,
c.. .75
E..
u
"'
Q. .sa
'"

Ci

"' .25
u-.,
<... .00>

-.25

-.sa
.13

Time

Fig. 14. Time history of vertical displacement at C (1.1 R. 0).

case. However, the horizontal displacement at location C is found to be higher than at
location B.

CONCLUSION

An advanced development of the time-domain boundary element method for two­
dimensional problems ofdynamic c1asto-plasticity is presented. This algorithm incorporates
higher order spatial and temporal variations of the field quantities. Von Miscs' material
model is used for simplicity. although any other m.tterial model can be easily incorporated
in the formulation. The formulation is found to produce static plasticity results when the
time step is very large. When the yield stress was selected to be very large compared to the
applied stress, the results were the same as those obtained from a linear elastodynamic
analysis. Both of these help establish the validity of the algorithm. Because of the unavail­
ability ofany published results in this area, no comparative study could be provided. Hence,
the accuracy of the methodology is established via convergence studies.

• 61:1 ,----------------------------.

.,
c .40 Elastic
~
'" PI ast Ic
u

'" /'
\Q. /

'" / \

Ci \

.2a \

"'
\.. \

C '-0 ,
N ,-<. \

~
\ ... """""'--

.00

-.2a "-- J...- ..I- -L. -.L. -l

.a 3.0 6.a 9.a 12.a 15.a

Time

Fig. 15. Time history of hori7.0ntal displacement at B.
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Fig. 16. Time history of horizontal displacement at C.
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APPENDIX A

Boundary k"rllels

G,V-.. , +G;v•• __1_ t ~[~[NCOSh.' (e,NAT) -2(N-l) cosh-' {C,(N-I)AT}
), J: 21tp ca" 1 c; 2 r r

t {e,(N-2)AT}] I (C,AT)l I •+(N-2)eosh- r +(-I)'.(t),j-2rIJ) -r- 5,-(-1)' (u/l-2r. ir)Q,

-(-I)'(<ll/<l:..-r.,r)p,] (AI)

SAS 29:11-1
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where

A, S, M, ISRA1L and P, K, BANERJEE

(A2)

S, = ('v-n+ 1): Jev-n+ 1)' - c..~T)' -2(N-nl: j:.V-nl' - C~'~);

+(,V-n-l):jt,v-:'~~=(~~~)

F---'-- J' P---'-', , ,
, '" r - , r" .. r·

p. = (N-n+ll'-(-) -2 (N-n,.-(-) + (N-n-I)'-(---)c,6T c,6T (",liT

wlth:x = I. 2,

A,

APPENDIX B

••• , • • Jt [8. B, ,(61'): ]C;'j +G;,/. =2 - ,P,- ,P,+iB, -- (Q,-Q,>
I • ttltr Cj c: - r

where. p. and Q. have been defined in the previous section,

with:x = 1,2,

(Ill)

(HZ)

(. )(. ')/0. J. '.f
E, = ,5,,+Zr,'J - n, +2 i,-r, .

~ ~ en
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APPE:"'DIX C

I "ott/me kemels (or phl5licit.l·

1~51

tCI)

, ..
f>':1Il, 0, o. ]R1- --:: R: ' (C:~)

':

wht:re P,. Q, and R, havc been ddincd earlicr. with 1 '" t. :!.

0, '" r,r., G;'i" +:!r,r,).

0:",
,o,

Jl {i"f),,-! + 2( -rj,..A (jll-r,rJ(~'ie -r)"T.1(l'l -r.,r. I{5k, -r,j'.4.()I/-r./ r .i();* + 6r.. r.t ri, r ).


